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A method on amplitude-weighted array technology is proposed based on an analytical formula in which
the radiation amplitudes of array elements are evaluated analytically by a random symmetrical far-field
radiation pattern. Using this formula, any desired spatial radiation pattern in the far field could be built
by applying the analytical solutions of radiation amplitudes of array elements. To check the validity of this
formula as well as the proposed technique, an annular intensity distribution as target far-field pattern is
designed, and the respective radiation amplitude of array elements are determined by solving the formula
analytically. The available far-field pattern is calculated by applying these solutions and then compared
with the target far-field pattern. The theoretical results show the capabilities of the analytical derivation
as well as the proposed technique in forming specific radiation patterns.
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Phased array technology, originally developed in the
1 950s[1], has recently been used in a broad range of appli-
cations in satellite communications, weather radar, non-
destructive detection, medical diagnosis, underground
exploration, smart antenna, etc.[2−7]. The primary ob-
jective of this technique is to build far-field radiation
patterns with high main lobe and low side lobes in a
desired direction by the coherent radiation superposi-
tion of the array elements. To reinforce the radiation
pattern, the relative phases of individual elements are
precisely adjusted while their respective amplitudes are
equal[8−14]. In general, the phased array encounters
difficulty in forming any target radiation pattern, such
as a ring or rectangular shape, despite the ring-shaped
radiation pattern’s applications in directed and wartime
communications and specific shape ultrasonic therapy.
In addition, delay lines applied in phased arrays be-
come short especially at the optical wavelength and are
difficult to fabricate, making phase shifters complicated
and costly.

In describing radiation fields, amplitude is another im-
portant factor aside from the phase. In this study, the
radiation pattern in the far field is theoretically inves-
tigated by manipulating the radiation amplitudes in an
in-phase radiation array. As a result, a universal formula
which determines the relationship between the radiation
amplitudes of array elements and a random symmetri-
cal radiation pattern in the far field is derived. This
formula provides a novel discovery that any desired radi-
ation pattern could be formed by simply controlling the
respective radiation amplitude (i.e., amplitude weight)
of array elements with these radiation amplitudes de-
termined by solving the formula analytically. Distinct
from phased array technology, this amplitude-weighting
array technology only requires the utilization of variable
attenuators in each radiation element and avoids the use
of phase shifters.

Furthermore, to confirm the validity of this method,
an annular radiation pattern is chosen as target far-field

pattern, after which the radiation amplitude of each
array element is determined by solving the formula an-
alytically. The available far-field pattern is calculated
by applying these solutions and comparing it with the
target far-field pattern.

We will build the universal formula for amplitude-
weighting array technology to describe the relationship
between the radiation amplitudes of array elements and
a symmetrical radiation pattern in the far field. Figure 1
illustrates a planar array with (2N+1)×(2M+1) ele-
ments in an isotropic media and Cartesian coordinate
system. The elements of this array are distributed sym-
metrically in plane xoy with the axial spacing of a and
b in the x-axis and y-axis directions, respectively. The

coordinates of the far-field point P is (x0, y0, z0),
−→
L 0

denotes the vector from origin o to point P , θ denotes

the angle between z-axis and the projection of
−→
L 0 in

plane xoy, and φ denotes the angle between the z-axis

and the projection of
−→
L 0 in plane yoz. To simplify, all

the array elements are regarded as ideal point radiation
sources with identical circular frequency ω and polariza-
tion direction.

Starting with a random array element C with coordi-
nates (na, mb) (–N 6 n 6 N , –M 6 m 6 M), a line

Fig. 1. Planar array elements distributed symmetricall in
plane xoy.
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that crosses
−→
L 0 perpendicularly at point B(x, y, z) is

drawn. OB
2

= x2 + y2 + z2 is the wave path distance
between element C and origin array element O(0, 0) and
can be written as

OB
2

= x2 + y2 + z2. (1)

After simple calculations, we obtain

OC
2 − BC

2
= xna + ymb. (2)

Using OB
2

= OC
2 −BC

2
, the following equation can be

derived:
x2 + y2 + z2 = xna + ymb. (3)

Using the following equations,

x = z tan θ, y = z tanφ,

z =
na tan θ + mb tanφ

1 + tan2 θ + tan2 φ
, (4)

and the wave path distance OB can be rewritten as

OB = OBn,m(θ, φ) =
na tan θ + mb tanφ√
1 + tan2 θ + tan2 φ

. (5)

The vibration at point P caused by any element of C(na,
mb) is given by

pn,m(
−→
L 0, t) = An,m cos

[
ωt − kL0 + kOBn, m (θ, φ)

]
,

(6)
where k is wave number. Considering that the polariza-
tion directions of the radiation from all array elements
are the same at the far-field point P , the total vibration
at point P caused by this (2N+1)×(2M+1) array can be
considered as the vibration summation of all individual
elements and could therefore be expressed as

p(
−→
L 0, t) =

N∑

n=−N

M∑

m=−M

pn,m(
−→
L 0, t) =

N∑

n=−N

M∑

m=−M

An,mcos

[
ωt − kL0+

kna tan θ√
1 + tan2 θ + tan2 φ

+
kmb tanφ√

1 + tan2 θ + tan2 φ

]
.

(7)

In the present study, focus is given on the distribution
of radiation amplitude in space. To separate the time
variable from the space variable and obtain An,m analyt-
ically from the above equation, a constraint is imposed
on An,m by assuming that An,m is symmetrical. This
implies that the radiation pattern in the far-field is sym-
metrical with the z-axis. Thus,

An, m = An, −m = A
−n, m = A

−n, −m, (8)

and

p(
−→
L 0, t)=

[
N∑

n=−N

M∑

m=−M

An,mcos

(
nka tan θ√

1 + tan2 θ + tan2 φ

)

cos

(
mkb tanφ√

1 + tan2 θ + tan2 φ

)]
cos(ωt − kL0)

= p(θ, φ) cos(ωt − kL0). (9)

Equation (9) indicates that the vibration at point P is
in harmonic motion with angular frequency ω and am-
plitude p(θ, φ) as denoted by

p(θ, φ) =

N∑

n=−N

M∑

m=−M

An,m cos

(
nka tan θ√

1 + tan2 θ + tan2 φ

)

cos

(
mkb tanφ√

1 + tan2 θ + tan2 φ

)
. (10)

Equation (10) shows the far-field amplitude distribution
of a radiation pattern. The maximum of p(θ, φ) obviously
occurs at θ=0 and φ=0. Furthermore, for the far-field
point P , both θ and φ are assumed small. Therefore, the
following approximation can be derived:

1 + tan2 θ + tan2 φ ≈ 1 + tan2 θ ≈ 1 + tan2 φ. (11)

By using the far-field approximation of Eq. (11), Eq.
(10) can be written as the function of separation of the
variables θ and φ with the following form:

p(θ, φ) =

N∑

n=−N

M∑

m=−M

An,m cos(nka sin θ) cos(mkb sinφ).

(12)

Herein, two parameters ξ and η with the following
definitions can be introduced:

ξ = ka sin θ, (13)

η = kb sinφ. (14)

Substituting these parameters into Eq. (12) and consid-
ering the symmetry of An,m, Eq. (12) takes the following
form

p(ξ, η) =

N∑

n=−N

M∑

m=−M

An,m cos(nξ) cos(mη)

=

N∑

n=−N

M∑

m=−M

An,me−j(nξ+mη), (15)

where An,me−j(nξ+mη) can be reasonably taken as the
contribution of element (n, m) to the spatial radiation
pattern p(ξ, η). Array element spacing a, b and radia-
tion wavelength λ are assumed to satisfy the following
relationship:

a >
λ

2
, b >

λ

2
. (16)

The relationship observed in Eq. (16) can be called a
half-constraint condition, which means that both ξ and
η fall within the range of [−π, π]. Multiplying both sides
of Eq. (15) by the factor 1

4π2 ej(n0ξ+m0η) and then doubly
integrating them by ξ and η, respectively, will result in
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the following relation:

1

4π2

π∫

ξ=−π

π∫

η=−π

p(ξ, η)ej(n0ξ+m0η)dξdη

=

N∑

n=−N

M∑

m=−M

An,m

1

4π2
,

π∫

ξ=−π

e−j(n−n0)ξdξ

π∫

η=−π

e−j(m−m0)ηdη

=

{
An0,m0

(n = n0, m = m0)
0 (n 6= n0, m 6= m0)

. (17)

According to Eq. (17), the radiation amplitude An,m of
element (n, m) can be easily obtained by

An,m =
1

4π2

π∫

ξ=−π

π∫

η=−π

p(ξ, η)ej(nξ+mη)dξdη

(
− N 6 n 6 N,−M 6 m 6 M

)
. (18)

Equation (18) clearly depicts the mathematical relation-
ship between the spatial radiation pattern p(ξ, η) and the
radiation amplitude (An,m) of any array element. This
formula acts as the basis of the amplitude-weighted ar-
ray technology and provides the novel discovery that any
desired symmetrical radiation pattern could be formed
by simply controlling the respective radiation amplitude
(i.e., amplitude weight) of array elements with these ra-
diation amplitudes solved by this formula. The formula
is always valid under the half-constraint condition and
far-field approximation. Furthermore, for the practi-
cal application of this technology, all the array elements
maintains constant phase and only their amplitudes vary.
Thus, this technology only requires the utilization of vari-
able attenuators in each radiation element instead of uti-
lizing a phase shifter.

Given that Eq. (18) shows the relationship between
a symmetric beam pattern and a phase-invariant (i.e.,
amplitude-only-variant) weight pattern, this equation
may be thought to be consistent with the formula given
in Ref. [15]. However, Ref. [15] did not provide a rigor-
ous discussion of the planar array and apertures in the
following aspects. In Ref. [15], Van Trees multiplied the
one-dimensional (1D) x-direction space distribution for-
mula of radiation amplitude by the 1D y-direction space
distribution formula of radiation amplitude. This prod-
uct was extended to the radiation amplitude space distri-
bution of a two-dimensional (2D) planar array, as shown
in Eq. (4.25) of Ref. [15]. However, this is not en-
tirely true. Instead, we established a radiation ampli-
tude distribution formula of a planar array in Eq. (7)
directly in three-dimensional (3D) space. To obtain an
analytical expression for the radiation amplitude of an
array element, a small-angle approximation was applied
to Eq. (10). Thus, the two space variables were sepa-
rated from each other and Eq. (18) was obtained, which
is consistent with Van Trees’ work. In the current work,
Eq. (18) is merely an approximate expression that is only
used to compute the radiation amplitude of array ele-
ment An,m. Finally, An,m would be substituted into

the original formula of radiation pattern in Eq. (10).
The space variables θ and φ notably exist in two multi-
plied functions of Eq. (10) although they are separated
in Eq. (4.25) of Ref. [15], which largely differentiates the
present study with Van Trees’ work.

Next, the validity of Eq. (18) is confirmed through the
so-called amplitude-weighted array technology. To sim-
plify the calculation, the desired radiation pattern is as-
sumed annular with a constant intensity. Let Ω1 and Ω2

be two solid angles corresponding to the inner and outer
boundaries of this pattern, respectively. The generalized
intensity or amplitude of the annular radiation pattern
can then be described as

p1(θ, φ) =

{
1 (Ω2

1 6 θ2 + φ2 6 Ω2
2)

0 (θ2 + φ2 > Ω2
2 or θ2 + φ2 > Ω2

1)
.

(19)

Furthermore, to simplify the calculation, the axial spac-
ing of array elements is assumed to satisfy the following
relationship:

a = b =
λ

2
. (20)

By substituting Eq. (20) into Eq. (13), the following
formulas are obtained:

{
ξ = π sin θ (−π 6 ξ 6 π)

η = π sin φ (−π 6 η 6 π)
. (21)

Thereafter, by substituting Eqs. (19) and (21) into Eq.
(18), the radiation amplitude unit An,m can be given by

An,m =
1

4

∫ π

2

θ=−

π

2

∫ π

2

φ=−

π

2

p1(θ, φ)ej(nπ sin θ+mπ sin φ)

cos θ cosφdθdφ

=

Ω1∫

θ=0

√
Ω2

2
−θ2∫

φ=
√

Ω2

1
−θ2

cos(nπ sin θ) cos(mπ sin φ) cos θ cosφdθdφ

+

Ω2∫

θ=Ω1

√
Ω2

2
−θ2∫

φ=0

cos(nπ sin θ) cos(mπ sin φ) cos θ cosφdθdφ

=

Ω1∫

φ=0

√
Ω2

2
−φ2∫

θ=
√

Ω2

1
−φ2

cos(nπ sin θ) cos(mπ sin φ) cos θ cosφdθdφ

+

Ω2∫

φ=Ω1

√
Ω2

2
−φ2∫

θ=0

cos(nπ sin θ) cos(mπ sin φ) cos θ cosφdθdφ,

(22)

where –N 6 n 6 N and –M 6 m 6 M . After further
calculations, An,m can be written as
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An,m =





Ω2∫
0

cos θ sin
√

Ω2
2 − θ2dθ −

Ω1∫
0

cos θ sin
√

Ω2
1 − θ2dθ (n = m = 0)

Ω2∫
0

cos(mπ sin φ) cosφ sin(
√

Ω2
2 − φ2)dφ −

Ω1∫
0

cos(mπ sinφ) cos φ sin(
√

Ω2
1 − φ2)dφ (n = 0, m 6= 0)

Ω2∫
0

cos(nπ sin θ) cos θ sin(
√

Ω2
2 − θ2)dθ −

Ω1∫
0

cos(nπ sin θ) cos θ sin(
√

Ω2
1 − θ2)dθ (n 6= 0, m = 0)

1
nπ

Ω2∫
0

cosφ cos(mπ sin φ) sin(nπ sin
√

Ω2
2 − φ2)dφ − 1

nπ

Ω1∫
0

cosφ cos(mπ sin φ) sin(nπ sin
√

Ω2
1 − φ2)dφ

(n 6= 0, m 6= 0)

.

(23)

The expression in Eq. (23) evaluates any radiation ampli-
tude unit An,m in forming an annular radiation pattern
in the far field. The following relationships can be easily
deduced from Eq. (23):

{
An,0 = A0,m (n = m)
An,m = An,−m = A

−n,m = A
−n,−m (n 6= 0, m 6= 0)

.

(24)
Equation (24) shows the symmetry of radiation ampli-
tudes of array elements relative to the origin and axes
of the coordinate system, and this symmetry originates
from the symmetrical intensity distributions of the de-
sired far-field radiation pattern relative to the z axis.

Furthermore, by substituting Eqs. (23) and (24) into
Eq. (10), the amplitude p(θ, φ) of the available far-field
radiation pattern could be given by

p(θ, φ)=A0,0 + 2

N∑

n=1

An,0 cos(nΘ) + 2

M∑

m=1

A0,m cos(mΦ)

+ 4

N∑

n=1

M∑

m=1

An,m cos(nΘ) cos(mΦ), (25)

where

Θ =
ka tan θ√

1 + tan2 θ + tan2 φ
=

π tan θ√
1 + tan2 θ + tan2 φ

,

Φ =
kb tanφ√

1 + tan2 θ + tan2 φ
=

π tan φ√
1 + tan2 θ + tan2 φ

.

(26)

This relation implies that if the radiation amplitudes of
the array elements An, m take the values shown in Eq.
(23), the actual radiation amplitude distribution in the
far-field, p(θ, φ), provided by the planar array must be
Eq. (25). In fact, the target far-field radiation amplitude
p1(θ, φ) defined in Eq. (19) is a step function. Therefore,
the manner by which p(θ, φ) approaches p1(θ, φ) reflects
the effectiveness of the universal formula of Eq. (18) in
amplitude-weighted array technology.

As a result, Figs. 2 and 3 plot the available far-field
radiation amplitude p(θ, φ) under different array ele-
ments at Ω1 = π/18 (in radians) and Ω2 = π/20 (in
radians). As seen in these plots, the available far-field

radiation amplitude exhibits a nearly doughnut-shaped
intensity distribution studded with several local intensity
spikes along the annular profiles when the numbers of ar-
ray elements are small. Nevertheless, when the numbers
of array elements increase, the uniformity of the spatial
radiation pattern p(θ, φ) is significantly improved, while
the local intensity spikes along its annular profile disap-
pear.

Fig. 2. (Color online) 3D view of available far-field radiation
patterns.

Fig. 3. (Color online) Top view of available far-field radiation
pattern at different array elements.
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Table 1. Energy Ratios under Different Numbers
of Array Elements

Number of Array Elements Energy Ratio (%)

(2N+1)×(2M+1) R

13×13 63.17

15×15 70.05

17×17 81.89

19×19 92.13

35×35 95.17

49×49 97.0

Figure 4 plots the corresponding line profiles of stim-
ulated far-field radiation patterns at x=0 under different
array elements, and each is compared with the rectangu-
lar line profiles of the target far-field radiation pattern.
With the increase of array elements, the radiation pat-
tern p(θ, φ) is gradually concentrated within the identical
solid angle range with that of the target radiation pat-
tern p1(θ, φ).

To quantitatively evaluate the extent by which the
available far-field radiation amplitude p(θ, φ) approaches
the target function p1(θ, φ), an energy ratio must be
defined:

R =
Emain

Etotal
=

∫ Ω1

θ=0

∫ √
Ω2

2
−θ2

φ=
√

Ω2

1
−θ2

|p(θ, φ)|2 dθdφ +

∫ Ω2

θ=Ω1

∫ √
Ω2

2
−θ2

φ=0

|p(θ, φ)|2 dθdφ/

∫ π/2

θ=0

∫ π/2

φ=0

|p(θ, φ)|2 dθdφ, (27)

where the numerator Emain denotes the radiation energy
of the practical radiation pattern distributed in the iden-
tical solid angle with that of the target radiation pattern,
while the denominator Etotal denotes the total radiation
energy of the practical radiation pattern. The calculated
energy ratios R under different array element numbers
are listed in Table 1. R increases with increasing ar-
ray element numbers, and if an energy ratio larger than
90% is required, the array elements should be equal to or
larger than 361, i.e., N = M > 9.

As discussed above, any desired and symmetrical ra-
diation pattern can be formed based on the amplitude-
weighted method. Nevertheless, to obtain an analytical
expression for the radiation amplitude of an array ele-
ment, small-angle approximations were applied to Eq.
(10) such that the variables θ and φ could be separated
in Eq. (12), thereby resulting in more analytical expres-
sions. To estimate the error between the formed radiation
pattern and the desired radiation pattern caused by this
approximation, the item of series in Eq. (10) is taken
and represented by

Snm(θ, φ) = cos
( nka tan θ√

1 + tan2 θ + tan2 φ

)

cos
( mkb tanφ√

1 + tan2 θ + tan2 φ

)
. (28)

After applying the small-angle approximation as shown
in Eq. (10), Eq. (28) can be rewritten as

S̃nm(θ, φ) ≈ cos
( nka tan θ√

1 + tan2 θ

)
cos
( mkb tanφ√

1 + tan2 φ

)
. (29)

Therefore, the approximation operation above will in-
troduce an error (or difference) factor of E(θ, φ) in the
far-field radiation pattern p(θ, φ) with the following
form:

E(θ, φ)=
N∑

n=−N

M∑

m=−M

An,m

[
Snm(θ, φ)−S̃nm(θ, φ)

]
.

(30)
Using Eq. (30), E(θ, φ) is zero when θ = 0 or φ = 0,
which means that the small-angle approximation has no
influence on radiation pattern as long as the radiation
directions lie in the yoz plane or the xoz plane. More-
over, the value of error E(θ, φ) not being equal to zero
when θ = φ 6= 0 indicates that the actual radiation dis-
tribution will vary if the radiation directions lie in the
two planes that bisect the yoz plane or the xoz plane
(the two diagonals in Fig. 3), namely,

E(0, φ) =
N∑

n=−N

M∑

m=−M

An,m

[
Snm(0, φ) − S̃nm(0, φ)

]
= 0,

(31)

E(θ, 0) =

N∑

n=−N

M∑

m=−M

An,m

[
Snm(θ, 0) − S̃nm(θ, 0)

]
= 0,

(32)

E(θ, φ) |θ=φ=

N∑

n=−N

M∑

m=−M

An,m

[
cos
( nka tan θ√

1 + 2 tan2 θ

)
cos

·
( mkb tan θ√

1 + 2 tan2 θ

)
−cos

( nka tan θ√
1 + tan2 θ

)
cos
( mkb tan θ√

1 + tan2 θ

)]
.

(33)

Herein, the sample above is still considered and the er-
ror in Eq. (33) is calculated quantitatively. Figure. 5
plots the calculated error E(θ) as a function of θ under
different array elements of N = M . The error E(θ) oscil-
lates with θ and a maximum E(θ0) exists at a certain an-
gle θ0. This maximum error E(θ0), the desired radiation
amplitude p(θ0,θ0) and its approximation p̃(θ0, θ0), the
relative error E(θ0)/p(θ0, θ0), and the maximum of ra-
diation amplitude pmax(θ, φ) are summarized in Table 2.

Fig. 4. Comparison of the line profiles of available far-field
radiation patterns for different array elements at x=0 with
the rectangular line profiles of the target far-field radiation
pattern.
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Table 2. Calculated Radiation Parameters under Different Numbers of Array Elements

Number of Array Elements Absolute Error Relative Error pmax(θ, φ)

(2N+1)×(2M+1)
θ0(deg.) p(θ0, θ0 ) ep(θ0, θ0)

E(θ0 ) E(θ0 )/p(θ0,θ0) (=p(0,0))

13×13 26.1672 2.447852 0.406883 2.040969 83.3779 169.0

15×15 31.9781 2.220776 0.014173 2.206604 99.3618 225.0

17×17 27.4942 2.568723 0.126813 2.441910 95.0632 289.0

19×19 24.1672 2.881674 0.322951 2.558723 88.7929 361.0

35×35 19.7030 3.971881 0.373965 3.597916 90.6020 1225.0

49×49 18.9076 4.49050 0.152512 4.337988 96.6037 2401.0

Fig. 5. Graphs of absolute error E(θ) under different array
elements of (a) 13×13, (b) 15×15, (c) 17×17, (d) 19×19, (e)
35×35, and (f) 49×49 by using An,m ≡1, ka=kb=π.

The maximum error E(θ0) increases with increasing num-
ber of array elements. However, the angle θ0 at which
the maximum of the error E(θ) occurs would decrease
with increasing number of array elements. At a specific
number of array elements, the error E(θ) is bound in
the effective range of radiation angles (θ and φ), which
is also much less than the maximum of radiation ampli-
tude pmax(θ, φ) at a large radiation angle. Therefore,
beam-forming not only with small radiation angles but
also with larger radiation angles can be implemented
by means of the amplitude-weighting method. In other
words, the small angle approximation has little influence
on beam forming.

In conclusion, an analytical formula describing the re-
lationship between the radiation amplitudes of planar
array elements and a symmetrical far-field radiation pat-
tern in an amplitude-weighted array system under the
half-constraint condition and far-field approximation is
derived. Using this formula, any desired symmetrical
far-field radiation pattern with smaller radiation solid
angles could be formed by simply controlling the re-
spective radiation amplitude (i.e., amplitude weight) of
the array elements with these radiation amplitudes de-
termined analytically. In addition, the quality of the
far-field radiation pattern formed by using the solved
radiation amplitudes (i.e., amplitude weights) of all ar-
ray elements can be estimated by the energy ratio R.

The simplicity of amplitude-weighted array technology
in using this analytical formula provides potential ap-
plications in special communications, medical diagnosis
and treatment, and well logging.

This work was supported by the Shaanxi Province
Natural Science Foundation of China under Grant No.
SJ08ZT04-6.
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